报 告 人:周小敏 副教授
报告题目:Measure complexity and rigid systems
报告时间:2023年5月28日(周日) 下午16:00-17:20
报告地点:泉山9#204
主办单位:数学与统计学院、数学研究院、科学技术研究院
报告人简介:
周小敏,华中科技黄色片网站副教授, 博士毕业于中国科学技术黄色片网站,主要研究方向是动力系统复杂性理论等。主持国家自然科学基金青年项目(已结题)和面上项目。研究成果主要发表在J. Differential Equations, Ergodic Theory and Dynamical Systems, Discrete and Continuous Dynamical Systems, Contemporary Mathematics, Proc. Amer. Math. Soc., J. Dynam. Differential Equations等。
报告摘要:
In this paper we introduce two metrics: the max metric and the mean metric . We give an equivalent characterization of rigid measure preserving systems by the two metrics. It turns out that an invariant measure on a topological dynamical system has bounded complexity with respect to the max metric if and only if it has bounded complexity with respect to the mean metric if and only if the dynamical system is rigid. We also obtain computation formulas of the measure-theoretic entropy of an ergodic measure preserving system (resp. the topological entropy of a topological dynamical system) by the two metrics.